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The equation derived by Peierls for the occupation numbers Nq of phonon states with wave vector q and 
appropriate polarization is linearized to give a maser equation for the deviations nq = Nq—Nq° from equili
brium. This master equation, with transition probabilities calculated from first-order time-dependent per
turbation theory, is then compared term by term with the linearized form of an approximate master equation 
proposed by Callaway. The latter assumes that the effects of normal and umklapp processes can be repre
sented by two relaxation frequencies, TN~X and rr~

l, respectively, which are both proportional to q2. This 
assumption is contradicted by the present analysis, which shows that the condition that the solution of the 
Callaway equation should also satisfy the Peierls equation in the case of steady-state heat flow leads to 
TN"1 proportional to q in first approximation. Furthermore, the Callaway equation contains nonzero transi
tion probabilities for a great many phonon processes which are absent from the Peierls equation. Thus, 
while Callaway's equation, with a modified TAT, can indeed give a good approximation to the phonon occupa
tion numbers in the steady state, it does not describe the approach to that state from an arbitrary initial 
distribution. These conclusions are found to remain true when boundary and point-defect scattering are 
included, in addition to three-phonon processes. A first approximation to the wave number and temperature 
dependence of the corresponding contribution to the Callaway relaxation times is given for each scattering 
mechanism. 

1. INTRODUCTION 

IN the language in which the states of a crystal are 
approximated by eigenstates of a Hamiltonian of 

the perfect crystal quadratic in the displacements of 
the atoms from their equilibrium positions, we can speak 
of a distribution of phonons, of which Nq have wave 
vector q. Each of these phonons is polarized, so that a 
polarization index must be added to distinguish among 
phonons of the same wave vector and different direc
tions of vibration. This index will be understood and 
not written down explicitly. 

The anharmonic terms in the Hamiltonian, plus per
turbations due to any defects present in the lattice, 
induce transitions between phonon states, with transi
tion probability Aq(i> per unit time, which can be cal
culated from time-dependent perturbation theory. Thus, 
we can write down a maser equation, 

dNJdt^AtfiNi -'tfq'0)+Cq VT(dNq/dT), (1) 

where Nq° is the equilibrium distribution, and the last 
term, with Cq the group velocity for phonons of wave 
vector q, is the "drift" term induced by the temperature 
gradient. The calculation of a first approximation to 
^4qq', and a comparison of the result with an intuitive 
approximation proposed by Callaway, are the principle 
aims of the present paper. 

Equation (1) is difficult to solve when AqqL> is non-
diagonal, and so it has been approximated by a 
Boltzmann equation1 with a single relaxation time. The 
latter is successful at very low temperatures, but it 
fails by a small amount near the conductivity maximum, 
and so an effort was made by Callaway to improve it.2 

* Visiting Fellow, 1963. Permanent address: National Bureau 
of Standards, Washington, D. C. 

1 Compare P. Carruthers, Rev. Mod. Phys. 33, 92 (1961), 
especially pp. 102 ff. 

2 J. Callaway, Phys. Rev. 113, 1046 (1959). 

This improvement seeks to account explicitly for normal 
or "N processes" which scatter phonons but do not 
lead to an equilibrium state. Intuitively, one should be 
able to represent the effect of N processes by a second 
relaxation time, r^(q) , which tends to cause the occupa
tion numbers Nq to relax to a nonequilibrium distribu
tion. Thus, Callaway2 approximates Eq. (1) by 

dNJdt= (rN)--W(*)-
+ Cq-VT(dNq°/dT), (2) 

where iVq° is the Planck equilibrium distribution, 

7VY = [exp (hwJkT) -1]-1 (3) 

with coq the phonon frequency, and Nq°(X) is a displaced 
distribution with #coq replaced by (hcc^+l^q). r r(q) is 
attributed entirely to umklapp, or U processes, which, 
unlike TN, do tend to induce equilibrium. 

Callaway's approximate master equation leads to a 
thermal conductivity formula which has been remark
ably successful in correlating experimental data, despite 
the fact that its theoretical foundation is purely intui
tive. Therefore, it is of interest to make a detailed exami
nation of the theoretical basis for Eq. (2) and, in particu
lar, to determine whether we can indeed calculate TN 
in such a way as to make Eq. (2) approximate Eq. (1), 
with ^ q q ' determined from perturbation theory. The 
condition that Eqs. (1) and (2) be identical will be 
formulated in the next section. We shall then go on to 
obtain the leading terms in an expansion of A^ in 
powers of q and q' which will make possible a term-by-
term comparison of Eqs. (1) and (2) in the limit of small 
g== | q | . This comparison, in Sec. 4, shows that (1) and 
(2) may disagree markedly for an arbitrary nonequi
librium state. However, in Sec. 5, it will be seen that 

3 Cf., B. K. Agrawal and G. S. Verma, Physica 28, 599 (1962); 
also, Phys, Rev. 128, 603 (1962). 
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TN can indeed be determined so that (1) and (2) agree 
in the steady state, although the result differs from 
Callaway's assumptions about the q dependence of TN 
and rr. 

Since the emphasis in this discussion is on normal pro
cesses, all these calculations will be carried out assuming 
an infinite, perfect crystal, so that we need consider 
N and U processes only. Any possible modifications due 
to boundary and defect scattering will be considered 
briefly in Sec. 6. Since defects are the dominant scatter
ing mechanism at low temperatures, we shall thus be 
prepared for a discussion of the experimental success 
of the Callaway theory, which will be the main subject 
of Sec. 7. 

2. FORMULATION OF PROBLEM 

Unlike the master equation, the Callaway approxi
mation (2) appears at first sight to have a diagonal 
transition probability matrix. In fact, however, the 
parameter X is expressible as a linear sum of the 
deviations 

and this circumstance gives rise to off-diagonal terms. 
The form of these off-diagonal terms depends on the 

explicit form of 3c, which Callaway calculates from the 
condition that N processes cannot change the total 
momentum. This condition is [Ref. 2, Eq. (13)] 

f— [#q°W-tfq]qdq=0. (4) 
J TN 

To solve for &, we shall make an approximation al
ready implicit in Eq. (1), viz., that squares and prod
ucts of the deviations nq can be neglected. Under this 
approximation 

^•q ehu/kT 

AV(^)=^q° • (5) 
kT (eh"/kT-iY 

A second approximation made by Callaway is that 
TN> as a function of q, has isotropic or cubic symmetry, 
so that terms proportional to factors of the type X^gy, 
with i^jj vanish from the integral in Eq. (4). This 
approximation is made here with no comment on its 
validity, since we want to compare Callaway's final re
sult with the master equation, whatever may or may 
not be said for the assumptions which went into his 
reasoning. Thus, we substitute Eq. (5) into Eq. (4), 
assume cubic symmetry, and obtain 

{Z [ q V w ^ / ( ^ { ^ / A r - l } 2 ) ] } . (6) 
q 

When Eq. (6) is substituted into Callaway's equation, 
the result is an approximate master equation with off-
diagonal terms, which may be compared with Eq. (1). 

To simplify this comparison, we shall rewrite both (1) 
and (2) as the sum of a diagonal and nondiagonal part, 
and devote attention to the latter. Thus, we observe that 
Eq. (2) can be put in the form, 

dNq/dt^(TN)^(N^(X)-Nq
Q) 

- r r V I - C q - VT(dN<?/dT), (7) 
where 

Tc-^TN-^+Tr-1 (8) 

is the relaxation time in the diagonal approximation, 
which neglects the momentum-conserving feature of N 
processes. 

Similarly, we can put with complete generality, sub
ject to a definition of rc to be given in the following 
section: 

Aqq'^Aqq' Tc Oqq' \y) 

and then proceed to compare the part of Eq. (1) which 
involves A* with the term TN-1(N^{X)-N^) in Eq. 
(7). If the latter equation is linearized by employing 
Eqs. (5) and (6), the condition that it be identical with 
Eq. (1) is 

3 Eq' {q-q7[Tisr(q)r*Kq,)]K' _ o 
= L Sqq'%', (10) 

Eq<zV*-WqW+i) 

where 

The remaining problem is to calculate A qq^ from per
turbation theory and then to discuss the circumstances 
under which Eq. (10), the necessary and sufficient con
dition for identity of Eqs. (1) and (2), can hold true. 
In this way, we determine the q dependence of TJV. An 
immediate observation is that Eq. (10) appears to re
quire that 

O q q ' = O q ' q . 

This, in fact, has been demonstrated by Leibfried, who 
has given the form of the perturbation equation for 
dNq/dt which will be used in the following section to 
yield expressions for rc

-1 and A^J. 

3. CALCULATION OF TRANSITION PROBABILITIES 

On the assumption that it is sufficient to restrict atten
tion to cubic anharmonic terms in the crystal Hamil-
tonian, Peierls has calculated a general equation for 
dNq/dt from perturbation theory, which we shall use in 
the form given by Leibfried [Ref. 4, Eq. (92.11)]. Each 
term in this equation contains a product of three fac
tors, e.g., (2Vq+l)iVq'(iVq*+l), corresponding to a proc
ess in which one phonon is created or annihilated and 
two others, respectively, are annihilated or created. 
When the equation is linearized, through neglect of 
terms quadratic and cubic in the deviations nq from 

4 G. Leibfried in Handbuch der Physik, edited by S. Fliigge 
(Springer-Verlag, Berlin, 1955), Vol. 7, Part 1; see Eq. (90.7), 
p. 296. 
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equilibrium, these three factors give rise to a term pro
portional to nq plus two sums containing summands pro
portional to n$ and nq*. Of these, the term proportional 
to nq is a diagonal contribution to A qq' which is negative 
if nq> 0, and so we shall identify this term with — rc~

lnq. 
The other terms can then be put in the form X A qq>^nq> 
where, for isotropic symmetry at least, AqqJ can be 
shown to have no nonvanishing diagonal elements. Since 
the calculation is straightforward but slightly tedious, 
only the result will be given here, which is: 

^ q q ' t = ( V * 2 ) 

XE[^q,-q',q*5(o;q-C0^+C0q*)(AV + ^q* 0 +l ) 
q* 

+Dq,q>,q*5(a>q+uq>-a:q*)(Nq*
Q-Nq

Q) 

+Dq,_q,,q*5(coq-coq,-coq*)(iVq*0-AV)], (12) 

rc-1=(27r/^2) 

X E Dq>q,,q*Z2d(uq-uq>+uq*)(Nq*°-Nq>
0) 

q'.q* 

+8(a>q-~a>q,-coq*)(Nq>«+Nq*
Q+l)1- (13) 

In these equations, the D symbol is defined by 

^q-q ' .q *^ I $q,q' ,q* I 2 > 

where $ is a matrix element of the cubic anharmonic 
potential [Compare Ref. 4, Eq. (91.6)], the form of 
which will be discussed shortly. I t will then be seen, 
as we shall point out in the next section, that <£> vanishes 
when q = q' and both are longitudinal. This will serve to 
substantiate the assertion that A1 has no diagonal 
elements. 

A simplification of the factors containing Nq° in Eq. 
(12) is achieved by supposing that we are dealing with 
phonon frequencies sufficiently low that we can expand 
the exponential in A q̂° and keep only linear terms, i.e., 

Nq°^kT/a>q. 

This approximation will give the leading term in an ex
pansion of TJV in powers of q, and that is all that is at
tempted in the present paper. 

A further simplification is imposed by the 8 factors 
in Eqs. (12) and (13), which are the conditions of energy 
conservation in a three-phonon interaction. Thus, on 
taking account of the delta in the first term of Eq. 
(13), we have 

A 7
q * ° - i \ V = ^ ^ K ' - W q * ) / K ' ^ * ) / 1 4 N 

= h"1kToOq/ (cOq'OJq*) . 

Similarly, in the first term of Eq. (12), 

Nf+N^+lQZh^kTuf/faqpr). (14b) 
To proceed further in obtaining a first approximation 

to the q dependence of ̂ q q ' f , we must know the dis
persion relations for coq. Since the optical phonons have 
Cq=^0, they make a negligible contribution to the ther

mal conductivity, and so we shall assume that we are 
dealing exclusively with acoustic phonons, for which 
coq oc q as q —» 0. Specifically, we shall make the usual 
isotropic acoustic approximation 

o>q=cq, (15) 

where c is the sound velocity, which may be either ci or 
ct, depending on whether q is longitudinally or trans
versely polarized, c will be treated here as constant, 
which should be adequate for calculating the leading 
terms in the q dependence of A^. 

Finally, it is necessary to approximate Dq,q>>q*, which 
involves an assumption about the interatomic forces. 
The assumption made here will be that of central forces, 
for which [Ref. 4, Eq. (91.16)] 

$q,q',q*= E ( 2 ^ 7 W ^ * * f a ) « * fa')*fa*) 
i,k,l 

.5jPq+q'+q*]T < ^ [ e x p (i^ R„) ~ 1] 
n 

X [ e x p ( . V R . ) - l ] - C e x p ( i q * - R « ) - l ] , (16) 

where N = number of atoms in lattice and the sum over 
n is taken over all lattice sites Rn • t]q=[h/{2Moiq)']

m, 
with M=atomic mass, and qi(q) is the direction cosine 
in direction i of the polarization of q. 

<Piici=ds<p/dRidRkdRi 

is the derivative of the pair potential. dp is the mo
mentum conservation factor which equals unity if 
q + q ' + q * is a reciprocal lattice vector and vanishes 
otherwise. 

The leading q dependence of <£ is obtained by ex
panding the exponentials in (16) and keeping only the 
first term in each expansion. This gives $ocgg'g*> with 
a proportionality factor depending on the directions and 
polarization angles of the wave vectors. To estimate this 
angular factor, we shall replace the sum over Rn with an 
integral over the volume of the lattice. I t will be assumed 
that the radial distribution function for a cubic or nearly 
isotropic lattice can be approximated by a spherically-
symmetric function g(r). One can then effect a partial 
integration and obtain 

$q,q>,q*^-i(2N^T%V^qqTZp 

• j (1/105) f ^(g"V3-3g'V2+3gV)dr 

X E ( P I ) ) + ( l / 3 0 ) [<p(g"r*+4g'r)dt 

Xe(q).eHq)efaO-eKq ,)efa*)-eHq*). (17) 

The sum ]C(PI>) i s taken over all distinct scalar products 
in which the six vectors e, e* are dotted together in 
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pairs* The sum ]JT (pE^ is taken over all permutations of 
the six vectors such that either (a) all e vectors stand 
to the left of all e* vectors or (b) each e vector stands 
to the left of an e* vector into which it is dotted. The sum 
5^ ( p ) is the sum over all permutations of the three e* 
vectors. 

When all the foregoing approximations are applied to 
Eq. (12), the quantity Sqq ' defined in Eq. (11) assumes 
the form, 

S q q ^ ± £ ( q q ' W 2 , (18) 
where 

S(qq') = l(h £<™>+I2 £<™>+/3 £<«) 
4NkTM3c*2 

X e(q) • e* (q)e(q') • c* (q')e(q*) • e* (q*)]2 , (19) 

with c*=c(q*) determined as a function of q, q' by the 
momentum and energy conservation conditions. The 
integrals Ih 12, and h multiplying ]T (PZ)), ]C (PJ? ) , a n d 

£(J>) are the same ones appearing in Eq. (17). The upper 
sign in Eq. (18) corresponds to vectors q, q' for which the 
first or third terms on the right in Eq. (12) are nonzero, 
while the minus sign corresponds to q, q' for which a 
nonzero contribution is obtained from the second term. 
The 8 factors assure that, if a given q, q', are both non
zero, then at most one of the three terms in Eq. (12) 
can be unequal to zero. 

The approximate expression (18) will be used in the 
following section in making a detailed comparison of 
corresponding terms in Eq. (10). In this way, we shall 
be able to make some statements about the conditions 
under which the Callaway equation approximates the 
master equation. Then, in Sec. 5, we can obtain a first 
approximation to the q dependence of TJV« At the same 
time, we shall discuss the q dependence of rc

_1 given by 
Eq. (13). 

4. COMPARISON OF CORRESPONDING TERMS 

The analysis of the preceding section, leading to Eq. 
(18), has prepared the way for a careful examination 
of the validity of Eq. (10), which is both necessary and 
sufficient for the validity of Callaway's approximation 
to the master equation. The method employed will be 
to list the range of possible vectors q' which, for given q, 
yield .Sqq'F^O. For any q' thus listed, we shall examine 
whether Sqq ' has the same sign as q»q', which is the sign 
of the corresponding term in the left-hand member of 
Eq. (10). Having established that most terms in the 
right-hand member of (10) have the same sign as the 
corresponding terms in the left-hand member, we shall 
then examine their relative magnitudes, with the aid of 
Eq. (17). Unlike the signs, the magnitudes of corre
sponding terms will be found to disagree. 

Before making any detailed calculations, let us ob
serve that we should be able to restrict ourselves to N 
processes. For if nq<Nq°, which appears reasonable, and 
if we assume a Debye frequency distribution, then the 

contribution of phonons with frequencies between v and 
v+dv in Eq. (10) is proportional to a factor less than 
v2 exp(—hv/kT). For U processes, v is large, and so this 
term should be small if T is less than the Debye tem
perature. To the extent to which this reasoning is valid, 
it substantiates Callaway's assumption that the term 
TN-^Nf^-N*) in Eq. (7) really represents an effect 
of N processes only. 

Given that we are dealing only with N processes, we 
have conservation of both energy and momentum. Thus, 
given q, q' such that the first term in Eq. (12) does not 
vanish, we have 

coq—ay+coq* = 0, (20a) 

q - q r + q * = 0 . (20b) 

The vectors q' for which Eqs. (20) hold, lie on one of 
three two-dimensional surfaces in q space, each of these 
surfaces corresponding to a different choice of the 
phonon polarizations. 

Since the q' vectors in the right-hand member of Eq. 
(10) are restricted to a small number of surfaces, it is 
obvious that Eq. (10) cannot hold for an arbitrary non-
equilibrium state. For in the left-hand member, the 
vectors q' range over the entire Brillouin zone. Thus, the 
validity of Eq. (10) for any nonsteady state depends on 
our establishing a correspondence between many terms 
on the left and a much smaller group of terms on the 
right. 

In determining whether or not such a correspondence 
can be established, let us suppose q, q' are chosen such 
that Eqs. (20) hold. In this case Sqq>>0 by Eq. (18), 
and so q«q '>0 if the terms corresponding to the same 
vectors q, q' in the left- and right-hand members of 
(10) are to have the same sign. 

By the cosine law, if 6 is the angle between q and q', 

cos0= (2^ , )~ 1 (^ 2 +^ 2 -g* 2 ) • 

From the energy conservation condition (20a), 

where c' = c(q'). By the traingle inequality 

cr>c or <;'><;*, 

i.e., q' is longitudinal. Let us suppose q' longitudinal, q* 
transverse, and set c' = c=2c* (a reasonable assumption 
for the transverse velocity), qf = nq. The cosine law 
written above now becomes 

cos0= (2n)-1[8n-3(n2+l)2. 

We have n% 1 since #*>0, and |cos0| ^ 1 for 1 ^ n ^ 3 . 
This determines the range of possible absolute values 
of q' contributing to the first term in Eq. (12). We have 
cos0>O for ^<2.215, i.e., for 0.61 of the possible range. 

Two other cases arise, according as c '=c*=2c or 
c' = 2c=2c* (different choices of the polarizations). 
Furthermore, since there are three terms in the right-
hand member of Eq. (12), with three cases for each 
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TABLE I. Percentage of the range of possible values of n — q'/q 
(labelled "percent agreement") for which sgn^g '^sgnCq^q ' ) . 
The group number corresponds to the first, second, or third term 
in Eq. (12), and the values min n, max n delimit the range of n. 

a,x n 

3 
oo 
2 
oo 
4 
3 
1 
5 
T 
3 
2 

Sgn Sqq' 

+ 
+ 
+ 
— 
— 
_ 
4-
+ 
+ 

Percent 
agreement 

61 
100 
50 

~ 0 
67 

100 
82 

100 
75 

term, there are nine distinct sets of q' vectors to be con
sidered with respect to the sign of cos0. The results of 
the investigation are listed in Table I. These are divided 
into three groups, corresponding respectively to the 
three terms in Eq. (12). The min and max values of n 
delimit the range of values qf/q for which |cos0| ^ 1 , 
g*>0, and the last column of the table gives the per
centage of this range for which cos0 has the same sign 
as Sqq'. The sign of the latter is given in the next-to-last 
column. 

The principal contribution to the thermal conduc
tivity comes from longitudinal phonons, since [cf. Ref. 
1, Eq. (3.30)] the contribution of a given phonon is pro
portional to c2. For q longitudinal, the minimum per
centage agreement listed in Table I is 6 1 % , thus assur
ing that the signs of most of the corresponding terms 
agree in Eq. (10). The worst agreement in Table I, de
noted by " ~ 0 " in the fourth row, represents agreement 
over an interval A ^ = | in an infinite range. In this case 
q is transverse. 

However, as we have mentioned, the agreement ob
served between the signs does not extend to the magni
tudes of these terms. Thus, in the set of q' vectors listed 
in the top row of Table I, cos0= 1 for n= 1, correspond
ing to q, q', q* all collinear. Since q and q' are longitudi
nal in this case and q* transverse, the polarization e(q*) 
is perpendicular to all the other vectors into which it is 
dotted in Eq. (17), and, thus 6 ^ = 0. Therefore, within 
this group of q' vectors, the largest term in the left-
hand member of (10) corresponds to zero in the right-
hand member. This result is in agreement with the fact 
that A*, as mentioned in the preceeding section, has no 
diagonal terms; for if q, q' are collinear and of the same 
magnitude and polarization, then either 3D(q,q') vanishes 
or, from Table I, q»q '<0. 

Evidently, the Callaway equation cannot approxi
mate the master equation if the deviations nq are 
allowed to vary independently. If, however, we consider 
the immediate neighborhood of the steady state, it 
might not be a poor approximation to replace all nq in 
Eq. (10), for vectors q occupying a small solid angle 
about the direction of VT, by their average values and 
set « q = 0 for q outside this solid angle. One could then 

integrate over the angles in (10), obtain separate values 
of TJV"1 for each of groups 1, 2, and 3 in Table I, and 
then average the results. In doing this, one would have 
to sum over the same two-dimensional surfaces in the 
left-hand member of (10) as in the right-hand member, 
and then multiply by a correction factor proportional 
to the volume of the Brillouin zone included within the 
solid angle. This would establish the many-to-one cor
respondence in which all wave vectors in the left-hand 
sum in (10), lying within the small solid angle about 
VT, would correspond to those wave vectors in the right-
hand sum which lie on the two-dimensional surface. 

Qualitatively, it would appear from all these consider
ations, that the Callaway equation should hold ap
proximately near the steady state. For purposes of using 
the equation to calculate thermal conductivity, it is 
sufficient that it should hold in the steady state itself, 
whatever may be its validity for describing the approach 
to that state. Consequently, in the following section, 
efforts will be limited to determining TN SO that the 
steady-state solution to the Callaway equation satisfies 
Eq. (10). 

5. q DEPENDENCE OF RELAXATION TIMES 

The steady-state solution to the Callaway master 
equation (2) has the form [Ref. 1 Eq. (3.17)] 

^ = - r c C l + ( / 3 / r ^ ) ] C q - V r [ i V q 0 ( ^ q 0 + l ) ] , (21) 

where 0 is a constant, independent of q. If Eq. (10) 
holds when this solution is substituted into it, then the 
Callaway equation, for these values of nq, will be iden
tical with the master equation. Therefore, Eq. (21) rep
resents a steady-state solution of the master equation 
provided TN can be so determined that Eq. (21) also 
satisfies Eq. (10). 

When (21) is substituted into (10) and Eq. (18) is 
used to evaluate Sqq ' , the result is 

l / r^gEEg'^-KqOiVaV+l)] 

XL[±©„'g'2>,'»'-r(q')AV0V+l)/ 
q 

q 

. C q ^ r ( q O , V / ( i V / + l ) } , (22) 

where r = r c [ l + ( l 5 / r ^ ) ] = r c , since &/TN is ordinarily a 
small correction. /, my n are, respectively, the x, y, and 
z direction cosines of q, the primes denoting correspond
ing cosines for q'. The z axis has been taken to coincide 
with the direction of vT. 

Examination of Eq. (22) shows that TN is a function 
of the direction cosines I, m, n of q. Since the contribu
tion of q to the thermal conductivity [Ref. 1, Eq. (3.30)] 
is proportional to n2, we are mainly interested in TN for 
q collinear with VT, i.e., l—m=0, \n\ = 1 . Under these 
conditions, TN is independent of the sign of n. This is 
seen by an examination of Eqs. (20), and corresponding 
equations for the other two groups of terms listed in 
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Table I, which readily shows that reversing the direction 
of q has the effect of reflecting all the points q', over 
which the sum Xlq' S^n^ is taken in Eq. (10), through 
the origin in q space. This means that we merely replace 
n' by —n' in the numerator of (22) when we replace n 
by— n (\n\—l)in the denominator. The sign and mag
nitude of the entire expression remain unchanged. 

If we set l=m=0, n— 1 in (22), then TN>0, since n' 
is squared in the denominator, while Table I assures 
that for most values of n', sgn ( ± SDqq0 = s g n n'* Further
more, if q is longitudinal, we expect 

l/TN=AT'q, (23) 

where A is constant. This follows from the arguments of 
Herring5 who suggests that for longitudinal q the surface 
defined by Eqs. (20) does not collapse as q —» 0, pro
vided crystal anisotropy is taken into account. If 
Herring's conclusion is correct, then as q —•» 0, TN a q by 
Eq. (22). Alternatively, we can argue that if the iso
tropic approximation, together with Eq. (19), is valid, 
then 3D(q,q') is a function of q'/q. From Table I, qr/q 
ranges always over the same values, whatever the 
magnitude of q. Furthermore, if it is true, as Callaway 
assumes2 that r (q / ) o c (q')~2 hi first approximation, q' 
will cancel out of the surface sum in (22) if the number of 
points in a surface element is proportional to q'2. Thus, 
the factor multiplying q in (22) will be independent of q, 
in linear approximation. 

This conclusion, however, depends on Herring's 
argument that r is proportional to q~2. Since Callaway2 

has accepted the correctness of Herring's conclusions, 
this acceptance will be continued tentatively here. 
Otherwise rjv-1 might depend on a negative power of q, 
and we should have great difficulty in making any pre
dictions about it. 

The index s, determining the temperature dependence 
of rjv, can be estimated by substituting (23) into (22) 
and assuming the Herring result5 

1 / T C = S 7 Y (24) 

for longitudinal q in a cubic crystal. This expression 
can readily be shown to follow from Eq. (13) by reason
ing similar to that by which one obtains Eq. (23) from 
Eq. (22). In estimating the sums in (22), one might 
assume a Debye frequency distribution for those sums 
taken over the entire Brillouin zone. The T dependence 
of the sum over the two-dimensional surface comes from 
the factors N^iN^+l) which are proportional to T2 

in first approximation, as well as from the factors r and 
£). With these approximations, putting (23) into (22) 
and using (24) yields a relation between A and B, plus 
the identity 

T*=TK (25) 

Equations (23) and (25) indicate that if rc
_1 oc q2

y then 
TN oc qf in contradiction to the assumption of Callaway2 

« C. Herring, Phys. Rev. 95, 955 (1954). 

who identified r ^ - 1 with the TV-process contributions to 
re -1 , thus assuming TN~1 OC q2. The present result, accord
ing to Eq. (8), implies that 

l/rr^BTzq2~AT\, (26) 

so that rr becomes negative as q —> 0. However, since 
it is only phonons with large q which relax by U pro
cesses, a negative relaxation time as q —> 0 has no physi
cal significance. The significant relaxation time for small 
q is rc, which is always > 0. 

6. BOUNDARY AND DEFECT SCATTERING 

Up to this point, only the contributions of N and U 
processes have been considered in evaluating the transi
tion matrix in Eq. (1). But for temperatures less than 
the Debye temperature, U processes are negligible. 
Consequently, before Eq. (2) can be applied to data 
taken on finite, imperfect crystals, we must add the 
effects of phonon scattering by point defects and crystal 
boundaries. 

Boundary scattering [Ref. 1, Sec. V I I ] can be treated 
by adding more drift terms to Eq. (1) and then aver
aging the equation over a cross section of the sample 
normal to vT. The averaged values of nq obey Eq. (1), 
with an additional relaxation term —T}>~l——c/L 
[Ref. 1, Eq. (7.19)] appearing in the diagonal elements 
of A qq> (L is a length of the order of the diameter of 
the sample). The only effect this term produces in Eq. 
(7) is to replace rc

_1 by Tc~
1+Tb~1^ 

To discuss bulk-scattering mechanisms, such as im
purity atoms, we shall make the assumption that they 
scatter independently. The transition matrix Aqq> is 
then a linear sum of matrices, one for each mechanism. 
These will give rise to a linear sum of matrices Sqq> in 
Eq. (10), each of which will make an additive contribu
tion to Tisr"1. 

Two types of point defect will be considered here-an 
outsized impurity atom or vacancy producing a spheri
cal strain field, and a mass defect. In the case of the 
first of these, the matrix A qq> is calculated very much as 
in Eq. (12) with the following differences [cf., Ref. 1, 
Eqs. (4.5), (4.13), (4.38)]: 

(1) There are no factors Nq° multiplying the D 
matrices. 

(2) For small q, q', the polarization e(q*) in the $ 
matrix [Eq. (16)] is replaced by a constant multiplying 
| q ' - q | - 2 ( q ' - q ) [Ref. 1, Eqs. (4.9) and (4.38)]. 

(3) The vectors q' are summed over the surfaces 
a>q' = coq. Application of the isotropic acoustic approxi
mation to coq' = coq yields q' oc q. Then we find Sq<i> oc q2q'2 

as before. In the surface sum appearing in Eq. (22), 
since the vectors q' are summed over a sphere, one can 
simply multiply the summand by q'2 and integrate over 
the angles. Under these circumstances, the q' factors in 
the sum cancel out, leaving the defect contribution to 
TN~1 proportional to q as in the case of iV" processes. The 
final result is that we add to the term ATAq a defect 
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contribution A$Tdq, where As is proportional to the 
square of the dilational strain. 

Beside this contribution to TN"1, a spherical strain 
field due to an outsized impurity will also contribute a 
term B8q

4 to l / r c [Ref. 1, Eq. (4.39)]. This second re
sult, along with the additive contribution T&"1 for bound
ary scattering, is in complete accord with Callaway's 
assumptions [Ref. 2, Eq. (18)]. However, he makes no 
provision for a defect contribution to rjy. The negligi
bility of A depends on the size of the dilation, and while 
one may neglect it for isotopy defects, it is probably 
wrong to do so for impurities in general. 

The second type of point defect to be considered here 
is the mass defect, in which the mass difference between 
an impurity atom and its neighbors perturbs the kinetic-
energy term in the Hamiltonian. This defect contributes 
a term proportional to coq

2 to A qq> and thus a term pro
portional to coqVP to Sqq> [Ref. 1, Eq. (5.9)]. The sur
faces over which q' is summed are still given by a>q=coq', 
and so from Eq. (22) we find, as in the case of the spheri
cal strain field, that the contribution to TAT1 is of the 
form AyTzq. Also, the contribution to rc

_1 for q—> 0 is, 
assuming a Debye frequency distribution, of the form 
Brf [Ref. 1, Eq. (5.14)]. 

The mass defect will also contribute to second-order 
processes in which a three-phonon interaction is associ
ated with scattering by an isotopic impurity. Since the 
q and T contributions of such processes to A^ are 
similar to those for N and U processes,6 these second-
order effects merely add constants proportional to By to 
the three-phonon coefficients A and B. Therefore, in 
fitting experimental data by adjusting A and B, we can 
merely assume that the second-order processes are in
cluded unless it is desired to discuss explicitly the iso
topic dependence of these constants. 

All of the foregoing results are summarized by the 
following equations: 

l/TN=lAT*+(Atl+A*)T'3q, 
l/rc=BTY+(B6+B^. {Z/) 

7. DISCUSSION 

While the foregoing sections substantiate Callaway's 
Eq. (2) as an approximation to the Peierls master equa
tion for states very near the steady state, nevertheless 
Eq. (27) is in complete disagreement with Callaway's 
identification of TN, Intuitively, it would seem reason
able to assume with Callaway that TN'1 is the ^-process 
contribution to TC~1 calculated by Herring,5 yet it is 

6 P. Carruthers, Phys. Rev. 126, 1448 (1962). 

evident that TN, in fact, should have a completely dif
ferent q and T dependence from rc. 

This conclusion does not in any way conflict with the 
ostensibly impressive experimental verification of Eq. 
(2). The TV-process correction in Callaway's theory is 
generally very small, and, in most cases, can be neglected 
except near the conductivity maximum. In the latter 
region, Callaway's fit2 to the data of Geballe and Hull 
for Ge exhibits a small discrepancy, which might be 
attributed to neglect of the TN correction. 

A real test of the Callaway correction can be made 
only in the few cases where it is important. In those 
cases, the discrepancy near the maximum is not removed 
unless one renounces any attempt to calculate By. from 
the theory of Klemens7 and treats this constant as an 
adjustable parameter. Thus, in alloys of Ge and Si, 
Toxen found8 that the Callaway theory comes out too 
high near the maximum unless By. is treated as adjust
able. I t is possible, as suggested by Pohl,9 that neglect 
of strain field scattering is responsible for discrepancies 
encountered in fitting the data in alloys, though such 
strains should be less important in a mixture of He 
isotopes, where the TN correction is important, and 
where similar discrepancies were found. For a He-
isotope mixture, Callaway suggests10 that By should be 
up to several times the value calculated according to 
Klemens. 

Consequently, while the TN correction in the form 
given by Callaway may be a good approximation in a 
few cases, such as Ge, there is still room for improve
ment which could be effected by a modified expression 
for TN- Equation (27) gives only the first approximation, 
and thus it will not hold, in general, above the conduc
tivity maximum. In the higher temperature range, one 
might add to TN"1 a term proportional to q* which wTould 
become dominant as T increases. If the coefficients of 
all these extra terms are treated as adjustable, one 
should obtain a good fit while keeping the theoretical 
expression for By [Ref. 1, Eq. (5.14)]. 
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